Research Post
Object counting is an important task in computer vision due to its growing demand in applications such as surveillance, traffic monitoring, and counting everyday objects. State-of-the-art methods use regression-based optimization where they explicitly learn to count the objects of interest. These often perform better than detection-based methods that need to learn the more difficult task of predicting the location, size, and shape of each object. However, we propose a detectionbased method that does not need to estimate the size and shape of the objects and that outperforms regression-based methods. Our contributions are three-fold: (1) we propose a novel loss function that encourages the network to output a single blob per object instance using pointlevel annotations only; (2) we design two methods for splitting large predicted blobs between object instances; and (3) we show that our method achieves new state-of-the-art results on several challenging datasets including the Pascal VOC and the Penguins dataset. Our method even outperforms those that use stronger supervision such as depth features, multi-point annotations, and bounding-box labels.
Acknowledgements
We would like to thank the anonymous referees for their useful comments that significantly improved the paper. Issam Laradji is funded by the UBC Four-Year Doctoral Fellowships (4YF).
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?