Research Post

Variational Auto-Encoder Architectures that Excel

Abstract:

This paper provides a generative approach for causal inference using data from observational studies. Inspired by the work of Kingma et al. (2014), we propose a sequence of three architectures (namely Series, Parallel, and Hybrid) that each incorporate their M1 and M2 models as building blocks. Each architecture is an improvement over the previous one in terms of estimating causal effect, culminating in the Hybrid model. The Hybrid model is designed to encourage decomposing the underlying factors of any observational dataset; this in turn, helps to accurately estimate all treatment outcomes. Our empirical results demonstrate the superiority of all three proposed architectures compared to both state-of-the-art discriminative as well as other generative approaches in the literature.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!