Research Post

Variance-Reduced Methods for Machine Learning

Abstract

Stochastic optimization lies at the heart of machine learning, and its cornerstone is stochastic gradient descent (SGD), a method introduced over 60 years ago. The last eight years have seen an exciting new development: variance reduction for stochastic optimization methods. These variance-reduced (VR) methods excel in settings where more than one pass through the training data is allowed, achieving a faster convergence than SGD in theory and practice. These speedups underline the surge of interest in VR methods and the fast-growing body of work on this topic. This review covers the key principles and main developments behind VR methods for optimization with finite data sets and is aimed at nonexpert readers. We focus mainly on the convex setting and leave pointers to readers interested in extensions for minimizing nonconvex functions.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!