Research Post
Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable "exclusion" assumptions that rule out any relationship between the instrument variable and the response that is not mediated by the treatment. In this paper, we show how to perform consistent IV estimation despite violations of the exclusion assumption. In particular, we show that when one has multiple candidate instruments, only a majority of these candidates---or, more generally, the modal candidate-response relationship---needs to be valid to estimate the causal effect. Our approach uses an estimate of the modal prediction from an ensemble of instrumental variable estimators. The technique is simple to apply and is "black-box" in the sense that it may be used with any instrumental variable estimator as long as the treatment effect is identified for each valid instrument independently. As such, it is compatible with recent machine-learning based estimators that allow for the estimation of conditional average treatment effects (CATE) on complex, high dimensional data. Experimentally, we achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators, including on a challenging simulated Mendelian Randomization problem.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?