Research Post
Although Reinforcement Learning (RL) has been one of the most successful approaches for learning in sequential decision making problems, the sample-complexity of RL techniques still represents a major challenge for practical applications. To combat this challenge, whenever a competent policy (e.g., either a legacy system or a human demonstrator) is available, the agent could leverage samples from this policy (advice) to improve sample-efficiency. However, advice is normally limited, hence it should ideally be directed to states where the agent is uncertain on the best action to execute. In this work, we propose Requesting Confidence-Moderated Policy advice (RCMP), an action-advising framework where the agent asks for advice when its epistemic uncertainty is high for a certain state. RCMP takes into account that the advice is limited and might be suboptimal. We also describe a technique to estimate the agent uncertainty by performing minor modifications in standard value-function-based RL methods. Our empirical evaluations show that RCMP performs better than Importance Advising, not receiving advice, and receiving it at random states in Gridworld and Atari Pong scenarios.
Feb 1st 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jan 31st 2023
Research Post
Jan 20th 2023
Research Post
Looking to build AI capacity? Need a speaker at your event?