Research Post

Training policy neural networks using path consistency learning

Abstract

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a policy neural network used to select actions to be performed by a reinforcement learning agent interacting with an environment. In one aspect, a method includes obtaining path data defining a path through the environment traversed by the agent. A consistency error is determined for the path from a combined reward, first and last soft-max state values, and a path likelihood. A value update for the current values of the policy neural network parameters is determined from at least the consistency error. The value update is used to adjust the current values of the policy neural network parameters.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!