Research Post

TAC: Towered Actor Critic for Handling Multiple Action Types in Reinforcement Learning for Drug Discovery

Abstract

Reinforcement learning (RL) has made significant progress in both abstract and real-world domains, but the majority of state-of-the-art algorithms deal only with monotonic actions. However, some applications require agents to reason over different types of actions. Our application simulates reaction-based molecule generation, used as part of the drug discovery pipeline, and includes both uni-molecular and bi-molecular reactions. This paper introduces a novel framework, \emph{towered actor critic} (TAC), to handle multiple action types. The TAC framework is general in that it is designed to be combined with any existing RL algorithms for continuous action space. We combine it with TD3 to empirically obtain significantly better results than existing methods in the drug discovery setting. TAC is also applied to RL benchmarks in OpenAI Gym and results show that our framework can improve, or at least does not hurt, performance relative to standard TD3.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!