Research Post
We study two randomized algorithms for generalized linear bandits. The first, GLM-TSL, samples a generalized linear model (GLM) from the Laplace approximation to the posterior distribution. The second, GLM-FPL, fits a GLM to a randomly perturbed history of past rewards. We analyze both algorithms and derive 𝑂̃ (𝑑𝑛log𝐾‾‾‾‾‾‾‾√)O~(dnlogK) upper bounds on their 𝑛n-round regret, where 𝑑d is the number of features and 𝐾K is the number of arms. The former improves on prior work while the latter is the first for Gaussian noise perturbations in non-linear models. We empirically evaluate both GLM-TSL and GLM-FPL in logistic bandits, and apply GLM-FPL to neural network bandits. Our work showcases the role of randomization, beyond posterior sampling, in exploration.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?