Research Post
We consider differentially private algorithms for reinforcement learning in continuous spaces, such that neighboring reward functions are indistinguishable. This protects the reward information from being exploited by methods such as inverse reinforcement learning. Existing studies that guarantee differential privacy are not extendable to infinite state spaces, as the noise level to ensure privacy will scale accordingly to infinity. Our aim is to protect the value function approximator, without regard to the number of states queried to the function. It is achieved by adding functional noise to the value function iteratively in the training. We show rigorous privacy guarantees by a series of analyses on the kernel of the noise space, the probabilistic bound of such noise samples, and the composition over the iterations. We gain insight into the utility analysis by proving the algorithm's approximate optimality when the state space is discrete. Experiments corroborate our theoretical findings and show improvement over existing approaches.
Acknowledgements
We would like to thank Ruitong Huang, who provides helpful insight on the composition analysis and the algorithm design, and Kry Yik Chau Lui, who points out the idea to extend our approach to high-dimensional Sobolev spaces.
Feb 1st 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jan 31st 2023
Research Post
Jan 20th 2023
Research Post
Looking to build AI capacity? Need a speaker at your event?