Research Post

Privacy-Preserving Q-Learning with Functional Noise in Continuous Spaces

We consider differentially private algorithms for reinforcement learning in continuous spaces, such that neighboring reward functions are indistinguishable. This protects the reward information from being exploited by methods such as inverse reinforcement learning. Existing studies that guarantee differential privacy are not extendable to infinite state spaces, as the noise level to ensure privacy will scale accordingly to infinity. Our aim is to protect the value function approximator, without regard to the number of states queried to the function. It is achieved by adding functional noise to the value function iteratively in the training. We show rigorous privacy guarantees by a series of analyses on the kernel of the noise space, the probabilistic bound of such noise samples, and the composition over the iterations. We gain insight into the utility analysis by proving the algorithm's approximate optimality when the state space is discrete. Experiments corroborate our theoretical findings and show improvement over existing approaches.

Acknowledgements

We would like to thank Ruitong Huang, who provides helpful insight on the composition analysis and the algorithm design, and Kry Yik Chau Lui, who points out the idea to extend our approach to high-dimensional Sobolev spaces.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!