Research Post

Prediction of Obsessive-Compulsive Disorder: Importance of neurobiology-aided feature design and cross-diagnosis transfer learning

Abstract:

Machine learning applications using neuroimaging provide a multidimensional, data-driven approach that captures the level of complexity necessary for objectively aiding diagnosis and prognosis in psychiatry. However, models learned from small training samples often have limited generalizability, which continues to be a problem with automated diagnosis of mental illnesses such as obsessive-compulsive disorder (OCD). Earlier studies have shown that features incorporating prior neurobiological knowledge of brain function and combining brain parcellations from various sources can potentially improve the overall prediction. However, it is unknown whether such knowledge-driven methods can provide a performance that is comparable to state-of-the-art approaches based on neural networks.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!