Research Post
Traditional multi-agent reinforcement learning algorithms are not scalable to environments with more than a few agents, since these algorithms are exponential in the number of agents. Recent research has introduced successful methods to scale multi-agent reinforcement learning algorithms to many agent scenarios using mean field theory. Previous work in this field assumes that an agent has access to exact cumulative metrics regarding the mean field behaviour of the system, which it can then use to take its actions. In this paper, we relax this assumption and maintain a distribution to model the uncertainty regarding the mean field of the system. We consider two different settings for this problem. In the first setting, only agents in a fixed neighbourhood are visible, while in the second setting, the visibility of agents is determined at random based on distances. For each of these settings, we introduce a Q-learning based algorithm that can learn effectively. We prove that this Q-learning estimate stays very close to the Nash Q-value (under a common set of assumptions) for the first setting. We also empirically show our algorithms outperform multiple baselines in three different games in the MAgents framework, which supports large environments with many agents learning simultaneously to achieve possibly distinct goals.
Feb 1st 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jan 31st 2023
Research Post
Jan 20th 2023
Research Post
Looking to build AI capacity? Need a speaker at your event?