Research Post
Recent literature in few-shot learning (FSL) has shown that transductive methods often outperform their inductive counterparts. However, most transductive solutions, particularly the meta-learning based ones, require inserting trainable parameters on top of some inductive baselines to facilitate transduction. In this paper, we propose a parameterless transductive feature re-representation framework that differs from all existing solutions from the following perspectives. (1) It is widely compatible with existing FSL methods, including meta-learning and fine tuning based models. (2) The framework is simple and introduces no extra training parameters when applied to any architecture. We conduct experiments on three benchmark datasets by applying the framework to both representative meta-learning baselines and state-of-the-art FSL methods. Our framework consistently improves performances in all experiments and refreshes the state-of-the-art FSL results.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?