Research Post
A computer system and method for extending parallelized asynchronous reinforcement learning to include agent modeling for training a neural network is described. Coordinated operation of plurality of hardware processors or threads is utilized such that each functions as a worker process that is configured to simultaneously interact with a target computing environment for local gradient computation based on a loss determination mechanism and to update global network parameters. The loss determination mechanism includes at least a policy loss term (actor), a value loss term (critic), and a supervised cross entropy loss. Variations are described further where the neural network is adapted to include a latent space to track agent policy features.
Feb 1st 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jan 31st 2023
Research Post
Jan 20th 2023
Research Post
Looking to build AI capacity? Need a speaker at your event?