Research Post
Abstract
State construction from sensory observations is an important component of a reinforcement learning agent. One solution for state construction is to use recurrent neural networks. Two popular gradient-based methods for recurrent learning are back-propagation through time (BPTT), and real-time recurrent learning (RTRL). BPTT looks at the complete sequence of observations before computing gradients and is unsuitable for online real-time updates. RTRL can do online updates but scales poorly to large networks. In this paper, we propose two constraints that make RTRL scalable. We show that by either decomposing the network into independent modules or learning a recurrent network incrementally, we can make RTRL scale linearly with the number of parameters. Unlike prior scalable gradient estimation algorithms, such as UORO and Truncated-BPTT, our algorithms do not add noise or bias to the gradient estimate. Instead, they trade off the functional capacity of the recurrent network to achieve scalable learning. We demonstrate the effectiveness of our approach over Truncated-BPTT on a benchmark inspired by animal learning and in policy evaluation for expert Rainbow-DQN agents in the Arcade Learning Environment (ALE).
Feb 1st 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jan 31st 2023
Research Post
Aug 8th 2022
Research Post
Read this research paper co-authored by Canada CIFAR AI Chair Angel Chang: Learning Expected Emphatic Traces for Deep RL
Looking to build AI capacity? Need a speaker at your event?