Research Post

Marginal Utility for Planning in Continuous or Large Discrete Action Spaces

Abstract

Sample-based planning is a powerful family of algorithms for generating intelligent behavior from a model of the environment. Generating good candidate actions is critical to the success of sample-based planners, particularly in continuous or large action spaces. Typically, candidate action generation exhausts the action space, uses domain knowledge, or more recently, involves learning a stochastic policy to provide such search guidance. In this paper we explore explicitly learning a candidate action generator by optimizing a novel objective, marginal utility. The marginal utility of an action generator measures the increase in value of an action over previously generated actions. We validate our approach in both curling, a challenging stochastic domain with continuous state and action spaces, and a location game with a discrete but large action space. We show that a generator trained with the marginal utility objective outperforms hand-coded schemes built on substantial domain knowledge, trained stochastic policies, and other natural objectives for generating actions for sampled-based planners.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!