Research Post
Rapid development in computer technology has led to sophisticated methods of analyzing large datasets with the aim of improving human decision making. Artificial Intelligence and Machine Learning (ML) approaches hold tremendous potential for solving complex real-world problems such as those faced by stakeholders attempting to prevent work disability. These techniques are especially appealing in work disability contexts that collect large amounts of data such as workers’ compensation settings, insurance companies, large corporations, and health care organizations, among others. However, the approaches require thorough evaluation to determine if they add value to traditional statistical approaches. In this special series of articles, we examine the role and value of ML in the field of work disability prevention and occupational rehabilitation.
Feb 9th 2023
Research Post
Feb 6th 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jul 7th 2022
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair Russ Greiner: Prediction of Obsessive-Compulsive Disorder: Importance of neurobiology-aided feature design and cross-diagnosis transfer learning
Looking to build AI capacity? Need a speaker at your event?