Research Post
From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.
Feb 24th 2022
Research Post
Feb 1st 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chairs Neil Burch and Michael Bowling: Rethinking formal models of partially observable multiagent decision making
Dec 6th 2021
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chairs Neil Burch and Micheal Bowling: Player of Games
Looking to build AI capacity? Need a speaker at your event?