Research Post
We propose Guided Random Testing (GRT), which uses static and dynamic analysis to include information on program types, data, and dependencies in various stages of automated test generation. Static analysis extracts knowledge from the system under test. Test coverage is further improved through state fuzzing and continuous coverage analysis. We evaluated GRT on 32 real-world projects and found that GRT outperforms major peer techniques in terms of code coverage (by 13 %) and mutation score (by 9 %). On the four studied benchmarks of Defects4J, which contain 224 real faults, GRT also shows better fault detection capability than peer techniques, finding 147 faults (66 %). Furthermore, in an in-depth evaluation on the latest versions of ten popular real-world projects, GRT successfully detects over 20 unknown defects that were confirmed by developers.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?