Research Post
In Bansal et al. (2019), a novel visual navigation framework that combines learning-based and model-based approaches has been proposed. Specifically, a Convolutional Neural Network (CNN) predicts a waypoint that is used by the dynamics model for planning and tracking a trajectory to the waypoint. However, the CNN inevitably makes prediction errors which often lead to collisions in cluttered and tight spaces. In this paper, we present a novel Hamilton-Jacobi (HJ) reachability-based method to generate supervision for the CNN for waypoint prediction in an unseen environment. By modeling CNN prediction error as "disturbances" in robot's dynamics, our generated waypoints are robust to these disturbances, and consequently to the prediction errors. Moreover, using globally optimal HJ reachability analysis leads to predicting waypoints that are time-efficient and avoid greedy behavior. Through simulations and hardware experiments, we demonstrate the advantages of the proposed approach on navigating through cluttered, narrow indoor environments.
Mar 3rd 2023
Research Post
Feb 26th 2023
Research Post
Sep 15th 2022
Research Post
Looking to build AI capacity? Need a speaker at your event?