Research Post

Exploration by optimisation in partial monitoring

Abstract

We provide a novel algorithm for adversarial k-action d-outcome partial monitoring that is adaptive, intuitive and efficient. The highlight is that for the non-degenerate locally observable games, the n-round minimax regret is bounded by 6m k^(3/2) sqrt(n log(k)), where m is the number of signals. This matches the best known information-theoretic upper bound derived via Bayesian minimax duality. The same algorithm also achieves near-optimal regret for full information, bandit and globally observable games. High probability bounds and simple experiments are also provided.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!