Research Post

Escaping the Gravitational Pull of Softmax

Abstract

The softmax is the standard transformation used in machine learning to map real-valued vectors to categorical distributions. Unfortunately, this transform poses serious drawbacks for gradient descent (ascent) optimization. We reveal this difficulty by establishing two negative results: (1) optimizing any expectation with respect to the softmax must exhibit sensitivity to parameter initialization (<code>softmax gravity well''), and (2) optimizing log-probabilities under the softmax must exhibit slow convergence (</code>softmax damping''). Both findings are based on an analysis of convergence rates using the Non-uniform \L{}ojasiewicz (N\L{}) inequalities. To circumvent these shortcomings we investigate an alternative transformation, the \emph{escort} mapping, that demonstrates better optimization properties. The disadvantages of the softmax and the effectiveness of the escort transformation are further explained using the concept of N\L{} coefficient. In addition to proving bounds on convergence rates to firmly establish these results, we also provide experimental evidence for the superiority of the escort transformation.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!