Research Post
Wrist trauma is common in children, typically requiring radiography for diagnosis and treatment planning. However, many children do not have fractures and are unnecessarily exposed to radiation. Ultrasound performed at bedside could detect fractures prior to radiography. Modern tools including three-dimensional ultrasound (3DUS) and artificial intelligence (AI) have not yet been applied to this task. Our purpose was to assess (1) feasibility, reliability, and accuracy of 3DUS for detection of pediatric wrist fractures, and (2) accuracy of automated fracture detection via AI from 3DUS sweeps. Children presenting to an emergency department with unilateral upper extremity injury to the wrist region were scanned on both the affected and unaffected limb. Radiographs of the symptomatic limb were obtained for comparison. Ultrasound scans were read by three individuals to determine reliability. An AI network was trained and compared against the human readers. Thirty participants were enrolled, resulting in scans from fifty-five wrists. Readers had a combined sensitivity of 1.00 and specificity of 0.90 for fractures. AI interpretation was indistinguishable from human interpretation, with all fractures detected in the test set of 36 images (sensitivity= 1.0). The high sensitivity of 3D ultrasound and automated AI ultrasound interpretation suggests that ultrasound could potentially rule out fractures in the emergency department.
Feb 9th 2023
Research Post
Feb 6th 2023
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair at Russ Greiner: Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms
Jul 7th 2022
Research Post
Read this research paper, co-authored by Fellow & Canada CIFAR AI Chair Russ Greiner: Prediction of Obsessive-Compulsive Disorder: Importance of neurobiology-aided feature design and cross-diagnosis transfer learning
Looking to build AI capacity? Need a speaker at your event?