Research Post
We propose a deep generative framework for multi-view learning based on a probabilistic interpretation of canonical correlation analysis (CCA). The model combines a linear multi-view layer in the latent space with deep generative networks as observation models, to decompose the variability in multiple views into a shared latent representation that describes the common underlying sources of variation and a set of viewspecific components. To approximate the posterior distribution of the latent multi-view layer, an efficient variational inference procedure is developed based on the solution of probabilistic CCA. The model is then generalized to an arbitrary number of views. An empirical analysis confirms that the proposed deep multi-view model can discover subtle relationships between multiple views and recover rich representations.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Adam White: Learning Expected Emphatic Traces for Deep RL
Sep 27th 2021
Research Post
Jul 13th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?