Research Post
Counterfactual prediction requires understanding causal relationships between so-called treatment and outcome variables. This paper provides a recipe for augmenting deep learning methods to accurately characterize such relationships in the presence of instrument variables (IVs)—sources of treatment randomization that are conditionally independent from the outcomes. Our IV specification resolves into two prediction tasks that can be solved with deep neural nets: a first-stage network for treatment prediction and a second-stage network whose loss function involves integration over the conditional treatment distribution. This Deep IV framework allows us to take advantage of off-the-shelf supervised learning techniques to estimate causal effects by adapting the loss function. Experiments show that it outperforms existing machine learning approaches.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Adam White: Learning Expected Emphatic Traces for Deep RL
Sep 27th 2021
Research Post
Jul 13th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?