Research Post

Decision-Guided Weighted Automata Extraction from Recurrent Neural Networks

Abstract

Recurrent Neural Networks (RNNs) have demonstrated their effectiveness in learning and processing sequential data (e.g., speech and natural language). However, due to the black-box nature of neural networks, understanding the decision logic of RNNs is quite challenging. Some recent progress has been made to approximate the behavior of an RNN by weighted automata. They provide a better interpretability, but still suffer from poor scalability. In this paper, we propose a novel approach to extracting weighted automata with the guidance of a target RNN's decision and context information. In particular, we identify the patterns of its step-wise predictive decisions to instruct the formation of automata states. Further, we propose a state composition method to enhance the context-awareness of the extracted model. Our in-depth evaluations on typical RNN tasks, including language model and classification, demonstrate the effectiveness and advantage of our method over the state-of-the-arts. It achieves an accurate approximation of an RNN even on large-scale tasks.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!