Research Post

Counting objects in images based on approximate locations

Abstract

Systems and methods for counting objects in images based on each object's approximate location in the images. An image is passed to a segmentation module. The segmentation module segments the image into at least one object blob. Each object blob is an indication of a single object. The object blobs are counted by a counting module. In some embodiments, the segmentation module segments the image by classifying each image pixel and grouping nearby pixels of the same class together. In some embodiments, the segmentation module comprises a neural network that is trained to group pixels based on a set of training images. A plurality of the training images contain at least one point marker corresponding to a single training object. The segmentation module learns to group pixels into training object blobs that each contain a single point marker. Each training object blob is thus an indication of a single object.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!