Research Post
We tackle the complex problem of determining entailment relationships between case law documents, one of the tasks in the Competition on Legal Information Extraction and Entailment (COLIEE). With input of an entailed fragment from a case coupled with a candidate entailing paragraph from a noticed case, our approach relies on four main components: (1) extraction of similarity measures between the two pieces of text; (2) application of a transformer-based technique on the input text; (3) applying a threshold-based classifier; and (4) post-processing the results considering the a priori probability determined by the data distribution on the training samples and combining the results of (1) and (2). Our experiments achieved an F-score of 0.70 on the official COLIEE test dataset, ranking first among all competitors for that task in the 2019 competition.
Feb 26th 2023
Research Post
Jan 23rd 2023
Research Post
Aug 8th 2022
Research Post
Read this research paper co-authored by Canada CIFAR AI Chair Angel Chang: Learning Expected Emphatic Traces for Deep RL
Looking to build AI capacity? Need a speaker at your event?