Research Post

Combining Direct Trust and Indirect Trust in Multi-Agent Systems

Abstract:

To assess the trustworthiness of an agent in a multi-agent system, one often combines two types of trust information: direct trust information derived from one's own interactions with that agent, and indirect trust information based on advice from other agents. This paper provides the first systematic study on when it is beneficial to combine these two types of trust as opposed to relying on only one of them. Our large-scale experimental study shows that strong methods for computing indirect trust make direct trust redundant in a surprisingly wide variety of scenarios. Further, a new method for the combination of the two trust types is proposed that, in the remaining scenarios, outperforms the ones known from the literature.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!