Research Post
WEKA is a widely used, open-source machine learning platform. Due to its intuitive interface, it is particularly popular with novice users. However, such users often find it hard to identify the best approach for their particular dataset among the many available. We describe the new version of Auto-WEKA, a system designed to help such users by automatically searching through the joint space of WEKA’s learning algorithms and their respective hyperparameter settings to maximize performance, using a state-of-the-art Bayesian optimization method. Our new package is tightly integrated with WEKA, making it just as accessible to end users as any other learning algorithm.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?