Research Post
We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many actions that is asymptotically optimal and worst-case rate optimal in finite time. The approach is based on the frequentist information-directed sampling (IDS) framework, with a surrogate for the information gain that is informed by the optimization problem that defines the asymptotic lower bound. Our analysis sheds light on how IDS balances the trade-off between regret and information. Moreover, we uncover a surprising connection between the recently proposed primal-dual methods and the Bayesian IDS algorithm. We demonstrate empirically that IDS is competitive with UCB in finite-time, and can be significantly better in the asymptotic regime.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Sep 27th 2021
Research Post
Sep 17th 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?